Minimal Lagrangian submanifolds in the complex hyperbolic space

نویسندگان

  • Ildefonso Castro
  • Cristina R. Montealegre
  • Francisco Urbano
چکیده

In this paper we construct new examples of minimal Lagrangian submanifolds in the complex hyperbolic space with large symmetry groups, obtaining three 1-parameter families with cohomogeneity one. We characterize them as the only minimal Lagrangian submanifolds in CHn foliated by umbilical hypersurfaces of Lagrangian subspaces RHn of CHn. Several suitable generalizations of the above construction allow us to get new families of minimal Lagrangian submanifolds in CHn from curves in CH 1 and (n − 1)-dimensional minimal Lagrangian submanifolds of the complex space forms CP, CH and C. Similar constructions are made in the complex projective space CPn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Hamiltonian-minimal Lagrangian submanifolds in complex space forms

Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...

متن کامل

Construction of Hamiltonian-minimal Lagrangian Submanifolds in Complex Euclidean Space

We describe several families of Lagrangian submanifolds in the complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.

متن کامل

Ideal Slant Submanifolds in Complex Space Forms

Roughly speaking, an ideal immersion of a Riemannian manifold into a space form is an isometric immersion which produces the least possible amount of tension from the ambient space at each point of the submanifold. Recently, B.-Y. Chen studied Lagrangian submanifolds in complex space forms which are ideal. He proved that such submanifolds are minimal. He also classified ideal Lagrangian submani...

متن کامل

On a Minimal Lagrangian Submanifold of C Foliated by Spheres

In general, not much is known about minimal submanifolds of Euclidean space of high codimension. In [1], Anderson studies complete minimal submanifolds of Euclidean space with finite total scalar curvature, trying to generalize classical results of minimal surfaces. More recently, Moore [10] continues the study of this kind of minimal submanifolds. Harvey and Lawson [6] also study a particular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998